
1

Sabrina: A Decentralized, Trigger-Action Based
System for the Internet of Things

Giovanni Campagna

School of Engineering
Stanford University
Stanford, California

gcampagn@cs.stanford.edu

Albert Chen

School of Engineering
Stanford University
Stanford, California

hselin@cs.stanford.edu

Ramon Tuason

School of Engineering
Stanford University
Stanford, California

rtuason@cs.stanford.edu

Abstract—In this paper, we will discuss the process
taken in the creation of Sabrina, a friendly, virtual
assistant that helps users make efficient use of efficient
use of our trigger-action based system. This system is
built on rules, which are logic expressions comprised of
inputs (triggers) and outputs (actions). When the system
detects a rule’s triggers, it causes its actions to be
executed in turn. Sabrina is grounded in Rulepedia, a
central web server that hosts channel code and metadata,
and also stores user-generated rules that users can install
and edit. But to avoid using an impersonal interface, we
built Sabrina to speak like a human to the user. One of
our main reasons for building this project was to tackle
problems surrounding data control and user privacy with
regards to rule executions that depend on a centralized
server, like IFTTT. We also sought to tackle the current
limitations of these systems in terms of flexibility and
user friendliness.

I. INTRODUCTION
Run by a cloud-based web service of the same name,

the IFTTT model (“IF This, Then That”) allows users to
connect and have creative control over various physical
and virtual products. A user can setup multiple “rules,”
where each rule contains a trigger and an action. When
the system detects the trigger being executed, it executes
the action of the rule in turn. As we can see, the power
of the IFTTT model allows users to integrate the
capabilities of disparate devices and services to bring
greater convenience to their lives. For example, a
homeowner could create a rule in which a security
camera right outside his front door takes a picture when
someone rings the doorbell. The rule could then
automatically send that picture to the homeowner
through SMS, allowing him to know if it is safe to open
the door. To show how IFTTT can go as far as save a
person’s life, a user with a fitness band could set up a
rule in which his phone automatically calls 911 if the
band notices a dramatic decrease in his heart rate. [1]

Related to the IFTTT model is the ever-growing
Internet of Things (IoT), the networks of physical
objects embedded with the software and hardware
needed to autonomously interact with each other. As the
objects within an IoT network each receive a unique
identifier, their individual capabilities and usefulness
improve significantly since they do not require human-
to-human or human-to-computer interaction to transfer
data to others in the network. By making effective use of
wireless technologies, micro-electromechanical systems
(MEMS) and the Internet, IoT makes data collection and
control much more convenient, enabling people to make
better use of the interoperable devices that they own. For
example, in the agriculture sector, sensor posts installed
by farmers can be used to aggregate data about the
current states of the soil and weather, allowing these
farmers to make more informed decisions about their
work going into the future. [2]

II. MOTIVATIONS AND CONTRIBUTIONS

A. User Privacy and Data Control
Given how powerful and flexible the IFTTT model

and the Internet of Things are, our group wanted to
explore how they work and learn what we could do to
take these technologies a step further. During our
research, we considered how IFTTT performs the
execution of rules. As their service stores all the rules
that their users create, it requests that their users allow it
to connect with the products that these rules make use
of. For example, if a user wants to set up a rule in which
he receives an Android notification every time a specific
friend makes a Facebook status, he would have to
provide IFTTT with access to his Facebook account.
And since these rules are stored in IFTTT’s servers, they
essentially have control over the user’s data. This is one
of the problems that our group sought to address.
Building upon the IFTTT model, we want to allow users
to run their rules without having to reveal sensitive

2

information to external services. By maintaining control
over their own data, they uphold the integrity of their
privacy.

B. User Friendliness
In addition, as technology becomes more and more

prevalent, it is important for developers to remember to
keep it reasonably usable to the general populace.
Keeping this in mind, our group sought to build a system
that abstracts complications away from the user. This is
where Sabrina plays a role in our application. Built to act
like a “magical, personal assistant,” Sabrina helps users
get accustomed to use our rule-based system. Rules are
described as “spells” in which triggers magically cause
actions to be executed without the involvement of the
user. Channels, which rules work through to detect
triggers and run actions (e.g. Facebook, Google Fit,
physical devices, etc.), are described as “wands” that
Sabrina uses to cast spells, keeping users from having to
learn about the technical intricacies of how these
channels operate. By creating a fun and friendly
personality that eases users into working with our rule-
based system, we hope to optimize their experience with
our application.

C. Flexibility
Our system builds upon the flexibility that IFTTT

offers. As of now, their service only allows for one
trigger to execute one action. While users can set up
multiple rules with the same trigger but different rules,
they currently cannot create rules with multiple triggers
that have to be detected before executing an action. With
our more expressive rule model, users have the freedom
to create more specific, elaborate rules. In addition,
because we do not use a centralized server to run our
users’ rules, our users have true ownership over their
data. They need not fear that any of their information is
being sold off to third parties, since we the developers
and administrators never see this information anyway. In
line with the decentralized nature of our system, Sabrina
has direct access to the features of our users’ phones
(e.g. calls, texts, geolocation, camera, etc.). This allows
the application to run offline with rules that don’t rely on
retrieving data from the Internet, since a user’s rules are
stored in and run directly in the smart phone. Finally, we
built Sabrina such that she would be aware of the user’s
local environment. By adding the power of IoT
integration into our application, we allow Sabrina to
detect nearby devices so that the user can smoothly
integrate them into the rule-execution process. For

example, imagine a user walks into a hotel room with an
IoT thermostat that Sabrina can interact with. The user
has a rule in which Sabrina provides his temperature/fan
speed preferences to a detected thermostat. Once Sabrina
notifies the user about the IoT thermostat and receives
approval from both ends (the user and the thermostat) to
send these preferences over, the room will automatically
start to feel comfortable for the user.

III. RELATED WORKS
Our application combines the strengths of various

technologies in industry. To promote user accessibility
and make users feel more welcome when they are
introduced to the system, a friendly human-like
personality similar to those by Microsoft, Apple, and
Google helps them learn about what they can and can’t
do with ease. Our backend makes use of an improved
IFTTT rule execution model that allows for greater
flexibility without feeling too overwhelming for the user.
Finally, our device discovery mechanisms use existing
technologies that maximize our application’s potential
for integrating into the Internet of Things.

A. Front-End Personality
XiaoIce is a virtual, social assistant that people can

add as a friend on various Chinese social networking
sites like Weibo, a microblogging services similar to
Twitter that is used by about 700 million people. By
adding XiaoIce to a chat room, users can talk with her
for extended periods of time, but what differentiates her
from ordinary bots that most people are familiar with is
her distinct personality and her ability to have a
sophisticated conversations. With complex natural
language processing and artificial intelligence running in
the background, XiaoIce can seem like teenage girl who
chimes in with context-specific facts about a range of
topics like sports and finance. On top of this, she can
speak with sensitivity, empathy, and humor. She can
adapt to a given situation by varying her speaking
pattern and molding her responses based on positive or
negative cues from the real people she speaks with. She
can “tell jokes, recite poetry, share ghost stories, relay
song lyrics, and pronounce winning lottery number.” [3]

Given how successful XiaoIce was in China, our
group wanted to make use of a similar engaging
personality in our application. This way, our users can
feel much more welcome when they start to learn about
rules or “spells” and how they can make their lives
easier. However, while Sabrina adds a nice twist, her
natural language processing is not yet as developed.

3

Other similar products that would be more familiar
to American audiences are Siri (Apple), Cortana
(Microsoft), and Google Now (Google). While each of
these virtual assistants can only work on their respective
companies’ smart phones, they generally work towards
the same goal: allow users to perform commands more
conveniently. Rather than traversing the many subpages
on his smart phone to find the right one for executing a
command (e.g. set an alarm, find nearby restaurants,
send a text, etc.), the user can simply tell his virtual
assistant to do it for him. [4] [5] [6]

B. Rule Execution
As mentioned previously, IFTTT is a powerful

automation service in which users can set up a trigger
condition that executes some action. IFTTT describes
rules as “recipes” that can combine the functions of
multiple products (e.g. “If I post a picture on Instagram,
save the photo to Dropbox”). While these are called “If
recipes,” they also support “Do recipes.” Here, users can
execute some action by tapping a button. (One can
image this button tapping as the trigger for the pre-set
action). [7]

Similar to IFTTT, Zapier also provides its users with
a trigger-action based system, but specifically for web
applications. One difference between these two services
is that IFTTT focuses more on individual consumers,
while Zapier targets small and medium sized businesses
and enterprises. Another difference is that, while Zapier
is concerned with automating web application execution,
IFTTT has started to move towards the integration of
hardware and the Internet of Things. [8]

Like IFTTT and Zapier, Sabrina runs as a rule
execution engine. However, we have also been working
towards building Sabrina as a front-end personality that
users can interact with through chat (i.e. natural
language processing), which is a feature that systems
like IFTTT and Zapier lack. In addition, because of her
ability to initiate a conversation and communicate with
the user, Sabrina can get to know the user over time and
even suggest rules that reflect their preferences.

One crucial difference between Sabrina and the
services mentioned above is that Sabrina supports
discovering and managing nearby devices. Sabrina was
designed with the Internet of Things in mind since
device-to-device communication is becoming more and
more important in our increasingly connected world.

C. Device Discovery
Tied with the Internet of Things, AllJoyn is a

collaborative open-source software framework that
allows physical devices and applications to discover and
communicate with each other without having to use the
cloud. It is currently able to support many language
bindings (e.g. C, C++, Objective-C, and Java) and can be
integrated into small and large platforms alike (e.g.
RTOS, Arduino, Linux, Android, iOS, Windows, and
Mac). Emphasizing the importance of flexibility,
AllJoyn enables users to connect devices of differing
brands, transports, categories, and operating systems.
Abstracting away the intricacies of transports
like Wi-Fi, Ethernet, Serial, and Power Line (PLC), it
creates sessions between devices that can be managed
with a user-friendly API. AllJoyn can also support
multiple connection session topologies, like point-to-
point and group sessions. Keeping in mind the
importance of security, they also support different
mechanisms and trust models like peer-to-peer
encryption (AES128) and authentication (PSK,
ECDSA). Embracing the open-source community, the
AllSeen Alliance is currently working to define and
implement more services and interfaces that deal with
specific use cases, like onboarding a new device for the
first time, controlling a device, and sending notifications.
By doing this, developers can integrate these services
into their own products and use them conveniently and
smoothly with other devices and applications in the
AllJoyn ecosystem. In addition to this, a device or
application can also implement private interfaces. This
means that, while an application can use common
services and interfaces to take part in the larger AllJoyn
ecosystem, it can also use the AllJoyn framework to
communicate with specific devices privately. [9]

Seeking to promote the Internet of Things like the
AllSeen Alliance, the Open Interconnect Consortium
(OIC) is working to provide a secure and reliable
approach for device discovery and connectivity across
different platforms and operating systems. Building a
broad industry consortium of companies that can help
create this common, interoperable approach, OIC is
defining the specification, certification, and branding of
a connectivity framework that abstracts complexity.
With its open-source implementation, the OIC is
creating a “consistent implementation of identity,
authentication, and security across the modes of User ID,
Enterprise/ Industrial ID, and Credentials.” It also seeks
to enable various new modes of communication, like
Peer-to-Peer, Mesh & Bridging, and Reporting &
Control. Overall, the OIC is currently establishing a
comprehensive communications framework that will

4

accommodate future applications in every key vertical
market in the industry. While the OIC’s open-source
work is geared towards the developers of operating
systems, applications, and platforms who want all of
their products to run smoothly across different brands,
the OIC firmly keeps in mind the individual consumers
who want their IoT devices to conveniently
communicate with their appliances and embedded
devices. [10]

In addition, iBeacon is a similar technology that
extends the capabilities of location services in iOS,
allowing iOS devices to broadcast their presence to
nearby agents, and to alert their applications when users
approach or leave a location with an iBeacon. On top of
monitoring a user’s location, an application has the
ability to estimate his proximity to the iBeacon using
Bluetooth Low Energy signals instead of latitude and
longitude coordinates. Developed for short-range control
and monitoring applications, Bluetooth Low Energy
(BLE) is a trade-off between energy consumption,
latency, and throughput. [11] [12]

Currently, Sabrina only makes use of iBeacon in
device discovery, but we plan on integrating AllJoyn and
IOC in the future. By running at an abstraction level
above the complexities of these technologies, Sabrina is
built to be independent from the underlying device
discovery/ management framework and transport.

IV. DESIGN
As shown in figure [2] to the right, our design of

Sabrina includes four main aspects. First, we have the
user interaction component. This is grounded in our
construction of the Sabrina persona as human-like
assistant that speaks amicably to the user, making feel as
comfortable as possible when navigating through the
application. Second, Sabrina has a discovery component,
which is responsible for collecting data about devices in
the surrounding environment. It also takes care of
running a recommendation system that suggests new
rules for the user based on his past preferences and what
these nearby devices are capable of. Third, we have our
most important component pair: the rule execution
system. This pair is tasked with running continuously in
the background of the user’s smart phone, collecting
data from a set of input channels (i.e. triggers) and
turning it into a set of output actions.

A. User interaction
As the name of our application implies, Sabrina was

designed with the idea that the complications and
intricacies of the system should be hidden away from the
user. We follow the commonly-used principle in
industry and in the field of human-computer interaction
that users should not be required to spend time
understanding the inner workings of a system, which
they feel should “just work.” [13]

Figure 1. Our application's user interface for device discovery. Once
Sabrina discovers a local device that she can connect with, the user

receives a prompt to use it with a set of recommended spells.

Figure 2. Here we have the four components that make up our
Sabrina application: user interaction, devices (and discovery),

inputs/trigger, and outputs/actions.

5

However, any programmable system inherently
faces a discoverability problem: some of the features of
the system will probably not be known to the casual
user, who will in turn not use the application as
efficiently as its developers would hope. Our design
tackles this problem by having the system periodically
alert the user of potential new functionalities for the
application. This takes the form of spontaneous, friendly
offers of help from Sabrina, like when a nearby device is
discovered and Sabrina tells the user what he can
possibly do with it.

The result of building Sabrina with flexibility and
user accessibility in mind is a two-part user interface. On
one hand, we offer a powerful interface that allows users
to leverage the full potential of the execution engine.
This includes the construction of very detailed and
specific rules that users who are more familiar with the
system may want to create. On the other hand, we have
simplified, automated interactions through the chat and
the spontaneous prompts by the Sabrina persona. This
promotes user retention by easing new users into the
system and keeping them from feeling intimidated by the
application’s array of capabilities.

The user, when asked by Sabrina through chat, is
able to decide among various programmed, suggested
rules, which we describe as
“spells” to keep with the theme of
magic and technical abstraction.
The user could also decide to
build his own spell using the
available “wands,” also known as
channels in the context of IFTTT.

This brings us to the crowd-
sourced model for the deployment
of the rules, as shown in figure
[3] to the right. A relatively small
set of contributing users generates
rules that they feel would interest
many other people. These rules
are then shared to a common
central repository, while each
Sabrina instance is capable of
discovering what rules in this
repository would be useful to her
owner in a given situation. The
spells that Sabrina decides to
suggest would be based on factors
such as her awareness of the
user’s location, the time, the
properties of the device that the
application is running on, and
nearby IoT device broadcasts.

B. Execution engine
In building our rule execution engine, we took

inspiration from the existing model of “recipes” from
IFTTT as described previously. However, we extended
this model to allow for more flexibility while
maintaining a limited number of channels and actions,
given that we wanted to strike a balance between user
friendliness and application capabilities. After all, the
user will become exposed to the full potential of the
engine only after getting accustomed to the system
through spells that Sabrina makes readily available.

Our model thus formulates the following structure
for a rule to be executed, in pseudo-BNF:

Rule := Trigger ActionList
Trigger := an arbitrary Boolean expression (and, or)

of SimpleTrigger
SimpleTrigger := Channel Event ParamList
ActionList := Action | Action ActionList
Action := Channel Method ParamList
ParamList := Param | Param ParamList
Param := Name Value
Value := Literal | TriggerValue

In this structure, a channel (known as “wand” in the

user interface) is a URI reference to a feature,
application, or account in the system, while a method or
event is a named reference to a specific trigger or action
in the context of the channel. The channel abstraction
provides namespacing to all features since different
methods with the same name should be able to have
different semantics. This also allows the application to
have a shared point of state for all triggers and actions,
across multiple invocations of a rule, which in particular
can reduce memory pressure and the number of wakeups
when multiple rules use the same channels.

Figure 3. Users can
provide rules to an open-
source database, which
each Sabrina instance

can take from and
recommend

Figure 4. Example rules that Sabrina may recommend for a user who
has shown recent interests in fitness after she locates a nearby

Android Wear watch.

6

Moreover, each event or method can be
parameterized, such that the parameter value is either a
literal value that the user had provided when creating the
rule, or a meta-reference to another value generated
while processing the rule. Parameters in the context of a
trigger serve as query filters that limit the set of the
events for which the trigger should be active. But in the
context of a method, they serve as additional data passed
to the method, thus reducing the number of different
features that have to be implemented separately.

At any given time, we say a simple trigger is firing if
the associated event code, using the current channel
state, computes a Boolean value of True. As one can
expect, a composite trigger is considered to be firing if
the result of evaluating the Boolean expression on all
simple triggers yield a value of True. When the trigger
of a rule is firing, each action in its action list is executed
in order, resulting in the following pseudo code:

1. Collect all sources of events for all triggers for all

rules
2. While there is at least one incoming event e

a. For each channel c
i. Update c given e

b. For each installed and enabled rule r
 . If r.trigger is firing

1. For each action a in r.actions
a. Execute a

c. Clear e

In addition, actions and triggers are evaluated with
respect to a context, which is a mutable set of name-
value pairs created and destroyed around each iteration
of loop (b). A trigger value parameter can be resolved by
referencing a name in the context, and each event or
method can update the context with new name-value
pairs using the values produced by the previous event or
method in order.

The advantage of this context system, in addition to
allowing the application to use a value computed from
the event into the action, is the ability to create “get”
actions, that is, actions whose whole purpose is to
compute a value (possibly using a shared channel state)
and store it inside the context, so that a subsequent
action in the same rule can output that value.

Unfortunately, using this design means that, within a
composite trigger, we have the side effect that all
component triggers have to be evaluated fully, even if
the Boolean outcome had already been determined, in
order to properly update the context. We deem this side
effect to be acceptable because triggers should be short
and idempotent, since they do not interact with the

outside world and only use the state cached by the
associated channel for the current event.

One may immediately notice that there is no
conditional execution for actions: if a trigger is firing,
then all associated actions will be executed
unconditionally. When combined with “get” actions, this
means that the produced value cannot be used to
determine if subsequent actions are to be executed or
not. Again, we consider this an acceptable tradeoff,
similar to the lack of while loops or advanced control
flow, because we want to keep the programmability
aspect affordable to someone that is not used to
algorithmic thinking, and, as detailed later in the
evaluation section of this paper, we have not found a
significant use case that is impaired by this limitation.

C. Interaction between Sabrina and external devices/
services
For our application, device discovery and the

suggestion of available rules uses existing, well-known
mechanisms from the IoT space, such as iBeacon: once a
set of available objects is collected, they are classified
into categories and a set of available rules from each
category is retrieved from the shared repository.

Once discovered, Sabrina notifies the user of the
availability of the device with an appropriate chat
message. As a rule is installed as a result of a suggestion
from a specific discovery operation, the communication
details (e.g. IP address, protocol and port of the device,
etc.) are implied and contextual, meaning that the user
need not be aware of this information but may access it
if he wants to.

In addition, Sabrina supports a set of so called
placeholder object references that are mapped to
different real object references at different times. They
allow a rule to refer to the “closest Corktastic board” or
the “currently paired Android Wear watch.” Again, this
mapping is transparent to the user as devices are
discovered and remapped in the background. Rules can
be installed even if the corresponding device is
unavailable, and these placeholder object references
become useful as the user moves around and the local
environment changes.

V. IMPLEMENTATION
The system with its current design is naturally

comprised of a user component, running continuously
and providing the services of Sabrina, and a central
server component (also known as Rulepedia), which
provides hosting for the sharing of rules. In order to

7

evaluate the feasibility of this system, we implemented
the user aspect as a native mobile application using the
Android 5.1 platform (API 21), and ran it on our phones
and tablets, whereas we implemented the central server
component as a node.js web server with a JSON file
database.

It should be noted, however, that this is not a client-
server design: the client does not need the server to
function, nor it needs a stable internet connection, except
for initially loading the rules and channels that the user
can take advantage of. After all, the data for the
application is stored client-side, and the execution of
rules also happens locally. Nevertheless, due to
implementation simplicity constraints, our client
currently does not function unless the server is properly
accessible when the application is booted up.

The client side is then further distinguished into two
parts: a rule execution service, and a user interface/
device discovery service (interacting through the Omlet
chat, installed separately). On top of this, to test our
application sufficiently, we added a simple native
Android UI that exposes most of the execution service
features in their raw forms.

A. Rule execution
The rule execution service starts at boot and runs

continuously in the background of the user’s smart
phone. It functions in a single-threaded fashion,
essentially implementing the pseudo-code described
above in the Design section of this paper in Android
Java code. It exposes to the UI layer the ability to install,
delete, and reload a rule.

We used JSON, a widely used and simple format
with library code in both JavaScript and Java, to
represent rules. We also have the ability to encode rules
as URLs (and then further encode them as QR codes),
which further simplifies the integration of our system
with existing communication platforms. After all, these
links can be copy-pasted and shared over various
mechanisms as our application can intercept the opening
of the link to decode it into a rule object.

In the execution service, we used a homegrown
event system abstraction. This counteracts the fact that
most event systems have the implied equality “one event
= one handler,” given that we want to be able to share a
source of events across different instances of a trigger, or
different triggers in the same channels. As mentioned
previously, this was done to minimize the number of
wakeups and the CPU overhead associated with
processing an event, which is a necessity in a mobile
device with limited battery life.

An event source in our system is an entity that is
capable of listening to some outside interaction, waking
up the execution thread, and producing a queue of some
values, the type of which is specific to the event source.
We include an event source for timeouts, for Android
intents, for HTTP(S) polling, and for the Omlet
messaging system. As we will describe further in the
evaluation section of this paper, we observed that these
basic primitives are powerful enough to integrate with
most useful services.

Furthermore, each simple trigger (as previously
defined) can be associated with a set of event sources,
some of which are private to the trigger (allowing them
to be parameterized) and some of which are shared in the
context of a channel. When a channel is updated, each
trigger looks at and caches the current event from the
source, in order to compute the firing state and update
the context when requested (unlike the abstract
description above, updates are handled by the trigger,
not by the channel, to avoid creating a caching state that
will not be useful).

Event sources are started and collected by the
execution engine altogether at boot. The service then
goes to sleep until the event source notices some
external event happening and causes a wakeup, at which
point the service will update the channels and fire all
rules appropriately.

B. Extensibility and internals of channels
While we initially planned to offer a limited set of

hardcoded channels, we quickly realized that this system
would not scale. So, in addition to channels that are
distributed as native code in the application package
(which are useful to integrate with specific Android
libraries and features like SMS), we also extended our
design with the ability to download and install code for a
channel on demand.

We use the same Rulepedia web server to host the
channel metadata and code. This allows us to access that
storage in the creation user interface, and to simplify an
implementation in which we do not actually load the
code on demand. Rather, we load everything upfront, but
this is a limitation that can be easily lifted.

However, we did not want to download code
arbitrarily from the Internet, even if it comes from a
trusted central source. After all, this would clearly be a
weakness from a security standpoint (even if this is not
directly a vulnerability since the code is served over
HTTPS and channels are vetted by the administrators).
To cover for this, we designed a declarative description
(also using JSON serialization) of a channel in terms of

8

the available triggers and actions, so that the code
associated would be able to run in a restricted sandbox
with a limited attack surface. We chose JavaScript
(using the Rhino JS library) as the language of choice,
because of its limited standard library and because it is
easy to run sandboxed. It thus stands as a better
alternative to Java, whose sandbox attempts in applets
are not as guaranteed to be secure. [14]

Inside the sandbox, code is essentially allowed no
interaction with the outside world, except when it seeks
to access arbitrary shared channel states. Triggers are
also allowed to declaratively define a set of event
sources they need to use (of the types described above)
and to access their current values in the code. On the
other hand, actions are allowed to return a declarative
representation of the behavior they want to generate
from a fixed set (HTTP calls, Omlet messages, emails,
Android intents). This declarative mechanism is
designed to keep external interaction to a minimum and
to contrast obfuscated code, which would allow our
application to obtain greater security through a system of
semi-automatic review before it gives its approval to the
main channel distribution system.

Future extensions could also include digital signing
of channel code, as well as a certificate-based system for
third parties, instead of relying on a central authority and
TLS. However, the problem of safely distributing
software is well-known and was not the focus of our
work. One has to realize, though, that because a rule is
limited in its power and its behavior cannot be
obfuscated such that a malicious rule would be installed
by an unsuspecting user, an extension channel has the
same security concerns of a third party app.

C. User Interface Layer and Integration with a Chat
System
We chose Omlet as our chat application of choice

because of our familiarity with its implementation, the
wide range of integration points for third-party apps like
Sabrina, and the ability to ask the developers directly for
documentation. Additionally, we use Omlet as the
messaging layer of choice for internal communication
with certain devices, and we also expose the application
to our rule engine.

Our implementation uses a specific chat room
between the user and Sabrina, and it is configured the
first time the application is opened (using the web hooks
mechanism for posting to the chat, which unfortunately
constrains us to require Internet connectivity).

The background service of our application would
then periodically scan for new devices and announce
their availability through the chat room, including in the
message to the user the option to choose a rule for the
device (refer back to figure [1]). Our implementation
also keeps a stored map from placeholder identifiers to
actual device addresses (encoded as URIs to get
namespacing for free), and this map is used when
resolving and executing a specific rule.

The only scanning protocol we implemented is
iBeacon (with custom semantics for the major code in
order to differentiate the various known device types),
but we believe the system to be sufficiently generic that
it will be possible to accommodate more discovery and
communication protocols such as AllJoyn or IOC in the
future, as previously mentioned. Indeed, iBeacon was
chosen because it is widely supported by many
platforms, and also because it was easy to turn into a
testable prototype. However, one should note that it is
fairly limited compared to other discovery mechanisms
(there is no pairing, for example).

We did not, at this time, consider on the issue of
onboarding (i.e. assigning a routable name to a device on
a network). After all, we assume this would be handled
by existing systems that will be integrated in the future
(for example, AllJoyn has existing generic onboarding
capabilities). The discovery protocol would also provide
the application with all the information it would need to
reach a local device over a supported communication
channel.

D. Server Side
Our implementation of the server side of our

application was kept to a minimum, essentially operating
as simple storage for rules and extension channels. We
also completed a powerful creation user interface in

Figure 5. Our current user interface for examining the spells stored
in the central database. Users may submit admin-approved spells for
the community to use. Each instance of Sabrina may in turn add any

of these spells to the user’s device and run them offline.

9

order to test the features of the system using JavaScript
and Twitter Bootstrap. However, we did not focus on
user interaction with this interface since we realized that
it would only be used sporadically (the main aspects of
Sabrina are the recommendation system and the chat
UI). Therefore, we did not prioritize polishing this
component, and creating a complex rule may seem
somewhat clunky at first.

Nevertheless, we still kept in mind that the creation
user interface is still an important part of the end user
experience, albeit an advanced feature. Thus, in order to
make the integration seamless between a UI in a desktop
browser and a client running on a smart phone, we
implemented a QR code system in which a newly-
created rule will generate a QR code that another user
can scan and have install on his own phone right away.

On the server side of our application, we also run the
rule recommendation system, which receives a set of
keywords from the client side to produce a set of
suggested rules from the central repository. In our
implementation, this is used directly as a mobile web
page that Sabrina opens when she detects changes in the
nearby environment, thus simplifying the source code
and avoiding another layer of client-side processing.

VI. EVALUATION AND FINDINGS
Because our team focused on completing the major

features of our application, the quality of our code, and
flexibility in terms of integrating other technologies in
the future, we did not have sufficient time to conduct
formal user studies. However, we casually pitched our
idea and showed our demo video to several peers, and
fortunately, most were intrigued by Sabrina’s concept
and utility. While we are confident that we have built
Sabrina in a way that makes the application user-friendly
and accessible, we are certain that having the opinions of
outside testers would help us patch up any rough patches
that we can improve. As stated previously, we are aware
of the disorganized look of our rule creation user
interface, but we hope to receive user feedback on how
to best fix it. Aside from input from casual users,
however, we also hope to gain feedback from the open-
source community. By making our code accessible to the
public, we hope that our integration of IFTTT and the
Internet of Things can help further the state of the art.

As an integral part of our development process, we
frequently conducted unit and system level testing,
which helped us find and resolve a number of

complicated implementation bugs. A rather difficult
aspect of our project was testing interoperability with
various devices and services such as Corktastic, Omlet,
Android Wear (via LG smart watches), and Google Fit.
In particular, we found it difficult to make our
application flexible enough to accommodate other types
of devices in the future.

With regards to device discovery, we ran tests with
iBeacon using device simulation. We used an iPhone
app by Radius Networks to generate iBeacon broadcasts
that would then be detected by a Sabrina instance
running on a nearby Nexus tablet. [15]

At the bottom of the page, Figure [6] shows the
format of the iBeacon advertisement protocol data unit
(PDU). We can interpret its fields in the following way.
We expect each device to advertise through the UUID
field a unique identifier for the Omlet chat room which
Sabrina can use to communicate with the device. We
then use the major number to identify the class of device
(e.g. 0 for Corktastic device, 1 for Android
Wear). Given that support for a variety of IoT device
frameworks is imperative to the long term success of
Sabrina, we bring these technical details to a higher
abstraction level to make our system agnostic. That said,
we hope to support AllJoyn and IOC in the future.

Overall, our system successfully respects the privacy
of our users. When a rule is installed by an instance of
Sabrina, the user gives the rule access to the appropriate
channels (e.g. Facebook, security camera, etc.) without
having to upload any sensitive information to a
centralized server. The rule execution system does not
even need to connect to the Internet to run.

While we consistently kept in mind the important of
user friendliness and accessibility, we found it difficult
to implement a teenage persona that can make users feel
welcome. For the sake of abstracting away technical
complexities, it is easy to describe rules as magical
spells that just work, and input/output channels as wands
that Sabrina can use. However, adding a personalized
touch for each individual user posed a problem. Right
now, our rule recommendation system uses a set of
keywords generated in the client side, but accurately
learning complex preferences over time is an artificial
intelligence problem that is not immediately solvable by
our team. Though, given the success enjoyed by XiaoIce
as described previously, we know that this feature is
important in the long run.

Our team made a lot of progress in terms of making
Sabrina flexible in many different aspects. First, the

Figure 6. The format of the iBeacon advertisement protocol data unit (PDU)

10

ability to stack multiple triggers and actions within one
spell enables users to have a great amount of freedom in
creating a spell. In addition, the fact that Internet
connection is required only when Sabrina wants to
recommend rules for the user allows rule execution to be
a pervasive offline service. Of course, one difficulty in
promoting flexibility is keeping it from undermining
user accessibility. For example, while stacking multiple
triggers and actions is a powerful concept, our team must
create an interface for this feature that feels
unintimidating and organized. This is where user test
data would help us significantly in striking this balance.

Finally, we integrated Sabrina with Deal, another
project developed in the class, and provided them with
an event-and-logic engine for their backend to determine
bet outcomes. The Deal team was able to use our system
to create rules for each bet and develop custom channels
to support different objects of contention. Our
experience with Deal reinforced our belief that Sabrina’s
rule model and API could be applicable to a variety of
usage scenarios and intentions.

Overall, our team learned an incredibly great deal
through this project. Some things that we have learned
include but are not limited to Android development, the
technical details behind the IFTTT model, the
importance of user feedback and human-computer
interaction, and the integration of devices within the IoT
framework.

VII. FUTURE WORKS
This paper described in detail our team’s initial

design and implementation of Sabrina. Based on our
experience with her, we would like to improve Sabrina
in several areas in the long run.

As previously mentioned, Sabrina only supports
iBeacon for device discovery currently, but we would
like to integrate and support other device management/
discovery frameworks such as AllJoyn and OIC. By
keeping Sabrina accessible to the public as an open-
source project, we hope to better facilitate future support
for emerging Internet connectivity frameworks. By
doing so, we promote the flexibility of our application as
we give users a greater range of interoperable devices
that they can connect with. In line with this goal, we
would like to open Rulepedia (the central web server
component of the Sabrina application) to the public so
that we can leverage the power of crowdsourcing to
include more channels and rules in the future. While this
seems like a lofty goal, we hope Rulepedia can someday
become the de facto standard for rule modeling and
sharing.

We would also like to improve Sabrina’s natural
language processing abilities and her capacity to initiate
communication with the user. We hope this will improve
Sabrina’s efficiency and user friendliness since this
would allow her to better understand the user’s
personality and preferences over. Our team understands
that this is a very difficult undertaking and that Sabrina
may not be as sophisticated as XiaoIce or as powerful as
Siri, but this is still an important factor for the user
experience in the long term. Eventually, we would like
to move beyond our current text-based chat interface and
start using natural speech like other established products.

Another aspect of our application that we would like
to continue building is our support for geolocation
services. While we use iBeacon for detecting devices in
the user’s vicinity, Sabrina would be more powerful if
she were not limited to local environments. Imagine the
following scenario: a user wants to set up a rule in which
the thermostat in his home turns on the heater only when
he is at most 15 minutes away from his home (he may be
coming home from work, or just taking a quick trip to
the supermarket). Our current implementation cannot
support long-range location services like this, but it is
undoubtedly a powerful tool that can be proven useful
for many users.

As discussed previously, we would like to
implement a functional artificial intelligence component
to Sabrina. Through this feature, she would be able to
develop a constantly evolving understanding of the
user’s dynamic personality and preferences. Imagine
another scenario: a user wants to set up a rule in which,
if Sabrina detects that he has just turned on his car, she
will change the radio station to one that she feels he will
enjoy. What Sabrina believes may be linked with her
analyses of other music-related spells that the user has
recently installed. Because we seek to improve the user
experience and make users’ lives more convenient, it
would be a worthwhile undertaking to implement an
intelligent system like this.

Finally, to speak in more general terms, we would
like to conduct more holistic evaluations of Sabrina to
determine if our rule and channel models are sufficient
for most user needs, and to better understand their
limitations. While this includes personally thinking of
ways to make the use of our application smoother, an
even better way of learning how to improve the overall
user experience is by gathering meaningful user data to
get crucial feedback on our design and implementation.

11

VIII. CONCLUSION
Sabrina is a user-friendly and powerful application

that combines the strengths of the IFTTT model and the
Internet of Things to make users’ lives more convenient
while maintaining the integrity of their privacy. As users
retain control of data that their rules use, the application
can run these rules without having to rely on a
centralized server. Designed with the user experience in
mind, Sabrina seeks to smoothen the process of learning
how to use our trigger-action based system and abstracts
away any technical jargon. Using Rulepedia as central
web server that stores sample rules that users can install
and edit to fit their needs, Sabrina includes a
recommendation system that we hope improve by
strengthening her artificial intelligence component. In
promotion of the Internet of Things, Sabrina also keeps a
lookout for nearby interoperable devices that may be of
interest to the user. With a rule execution system that
emphasizes both flexibility and functionality, users can
set up rules that can be as complex as they want.
Overall, this project showed us many of the challenges
of integrating different technologies in the industry, but
we learned a great deal about mobile and social
computing in the process.

IX. ACKNOWLEDGEMENTS
Our team would like to thank Michael Fischer for

his help with integrating our system with Corktastic. We
would also like to thank the Deal team for working with
our system, testing it out, and helping us learn how to
make it more flexible. We would also like to thank the
Stanford Computer Science department for providing us
with the Mobisocial Computing Lab (our main working
space) and our budget for the Hackathons. We would
also like to thank the Omlet team for providing us with
relevant documentation, helping us better understand
their API. Finally, we would like to thank Professor
Monica Lam for giving us constant guidance throughout
the quarter, making us think critically about our overall
goals and the greater impact of our work.

X. REFERENCES
	

[1] "About IFTTT," IFTTT, [Online]. Available:
https://ifttt.com/wtf.

[2] "What is Internet of Things (IoT)?," WhatIs, [Online].
Available: http://whatis.techtarget.com/definition/Internet-
of-Things.

[3] S. Weitz, "Meet XiaoIce, Cortana's Little Sister," Microsoft,
[Online]. Available:
https://blogs.bing.com/search/2014/09/05/meet-xiaoice-
cortanas-little-sister/.

[4] "iOS - Siri," Apple, [Online]. Available:
https://www.apple.com/ios/siri/.

[5] "Meet Cortana for Windows Phone," Microsoft, [Online].
Available: https://www.windowsphone.com/en-us/how-
to/wp8/cortana/meet-cortana.

[6] "Google Now," Google, [Online]. Available:
https://www.google.com/landing/now/.

[7] "Put the Internet to Work for You - IFTTT," IFTTT,
[Online]. Available: https://ifttt.com/.

[8] "How It Works - Zapier," Zapier, [Online]. Available:
https://zapier.com/how-it-works/.

[9] "Learn - AllSeen Alliance," The Linux Foundation,
[Online]. Available:
https://allseenalliance.org/developers/learn.

[10] "About Us | Open Interconnect Consortium," Open
Interconnect Consortium, [Online]. Available:
http://openinterconnect.org/about/.

[11] "iOS: Understanding iBeacon," Apple, [Online]. Available:
https://support.apple.com/en-us/HT202880.

[12] "Overview and Evaluation of Bluetooth Low Energy,"
National Center for Biotechnology Information, [Online].
Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478807/.

[13] K. A. Butler, R. J. Jacob and B. E. John, "Introduction and
Overview to Human-Computer Interaction," ACM SIGCHI,
[Online]. Available:
http://www.sigchi.org/chi95/proceedings/tutors/kb_bdy.htm.

[14] "Rhino Documentation | MDN," Mozilla Developer
Network, [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Rhino_documentation.

[15] "Locate Beacon Mobile App," Radius Networks, [Online].
Available: http://store.radiusnetworks.com/products/locate-
ibeacon-app.

